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Abstract

The microbiota—gut-brain axis (MGBA) is an intricate bidirectional communication network that links intestinal micro-
biota with the central nervous system (CNS) through immune, neural, endocrine, and metabolic pathways. Emerging
evidence suggests that dysregulation of the MGBA plays pivotal roles in the onset and progression of neurodegen-
erative diseases. This review outlines the key molecular mechanisms by which gut microbes modulate neuroinflam-
mation, blood-brain barrier integrity, protein misfolding, and neuronal homeostasis. We discuss how microbial
metabolites, such as short-chain fatty acids, tryptophan derivatives, and bile acids, interact with host to influence CNS
functions. Disease-specific features are described across Alzheimer’s disease, Parkinson’s disease, Multiple sclerosis,
and Amyotrophic lateral sclerosis, emphasizing the distinct and overlapping pathways through which gut dysbiosis
may contribute to pathogenesis. We further explore the translational potential of microbiota-targeted therapies,
including probiotics, fecal microbiota transplantation, dietary interventions, and small-molecule modulators. While
preclinical results are promising, clinical trials reveal considerable variability, highlighting the need for personalized
approaches and robust biomarkers. Challenges remain in deciphering causal relationships, accounting for inter-indi-
vidual variability, and ensuring reproducibility in therapeutic outcomes. Future research should integrate multi-omics
strategies, longitudinal human cohorts, and mechanistic models to clarify the role of the MGBA in neurodegeneration.
Collectively, understanding the MGBA provides a transformative perspective on neurodegenerative disease mecha-
nisms and offers innovative therapeutic avenues that bridge neurology, microbiology, and precision medicine.

Keywords Neurodegenerative diseases, Gut microbiota, Gut-brain-axis, Metabolite, Neuroinflammation

*Correspondence:

Feng Zhang

zhangfengzmc@163.com

! Key Laboratory of Basic Pharmacology of Ministry of Education

and Joint. International Research Laboratory of Ethnomedicine of Ministry
of Education and Key Laboratory of Basic Pharmacology of Guizhou
Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi,
Guizhou, China

2 State Key Laboratory of Natural Medicines, School of Traditional Chinese
Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China

? Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical
University, Bengbu Medical University, Bengbu, Anhui, China

@ Springer

Introduction

Neurodegenerative diseases (NDDs) — including Alzhei-
mer’s disease (AD), Parkinson’s disease (PD), Hunting-
ton’s disease (HD), amyotrophic lateral sclerosis (ALS),
and others — are characterized by progressive loss of
neurons leading to cognitive or motor deficits [1]. These
conditions impose a tremendous burden, affecting tens
of millions worldwide as populations age [2]. Tradition-
ally, NDD pathogenesis has been viewed through a neu-
rocentric lens focusing on protein misfolding, synaptic
dysfunction, and central immune activation [3]. However,
mounting evidence points to an intimate connection
between the brain and the gastrointestinal tract in these
disorders [4]. Patients with NDDs frequently exhibit

©The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.


http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43556-025-00307-1&domain=pdf
http://orcid.org/0000-0003-1122-3640

Chen et al. Molecular Biomedicine (2025) 6:64

gastrointestinal disturbances or microbiome alterations
years before classic neurological symptoms emerge [5, 6].
For example, chronic constipation can precede PD motor
Symptoms by up to 20 years, and many AD patients show
distinct gut microbiota profiles compared to healthy
peers [7]. Such observations suggest that perturbations in
the microbiota—gut—brain axis (MGBA) may play a role
in disease initiation or progression.

The MGBA refers to the bidirectional communication
network linking the gut’s resident microbiota and the
central nervous system (CNS) [8—10]. Through neural,
immune, endocrine, and metabolic signaling pathways,
the gut microbiome can influence brain physiology, while
the brain can in turn modulate gut microbial composi-
tion via stress hormones and autonomic innervation [11,
12]. Crucially, this cross-talk is a two-way street: CNS
pathology or stress can alter gut function and microbiota,
potentially creating a vicious cycle [13]. For instance, psy-
chological stress activates the hypothalamic—pituitary—
adrenal (HPA) axis and sympathetic nerves, leading to
cortisol and catecholamine release that increases intesti-
nal permeability and disrupts the gut habitat [14, 15]. The
resulting leakage of microbial molecules (e.g. endotoxin)
can trigger systemic inflammation that further exacer-
bates neuroinflammation, illustrating how brain disor-
ders are not confined to the CNS but involve a systemic
network including the gut ecosystem [16].

In this review, we synthesize current knowledge of how
gut microbes and their metabolites interact with the host
to influence neurodegenerative processes. We begin by
outlining the components of the MGBA and its major
communication pathways. Next, we detail several mech-
anistic links by which the microbiome can trigger or
protect against neurodegeneration — spanning immune
modulation, metabolic and neuroendocrine signal-
ing, microbial neurotransmitter production, and effects
on protein aggregation and epigenetic regulation. We
then examine four representative NDDs (AD, PD, ALS,
and MS), highlighting disease-specific gut microbiome
alterations and MGBA-related mechanisms identified in
each. (Although multiple sclerosis (MS) is classically an
autoimmune inflammatory demyelinating disease rather
than a primary proteinopathy, we include it here due to
overlapping chronic CNS injury and immune dysregu-
lation influenced by the microbiome.) For each disease,
specific microbial taxa, metabolites, and pathways impli-
cated in pathogenesis are discussed. Finally, we explore
therapeutic implications: strategies to restore a healthy
microbiome or modulate MGBA signals — from diets
and probiotics to fecal microbiota transplantation (FMT)
and metabolite-based interventions. We also summarize
emerging biomarkers and ongoing clinical trials, and con-
sider challenges such as inter-individual variability and
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the need to establish causal relationships. By integrating
these insights, we aim to demonstrate how targeting the
MGBA provides novel multi-targeted opportunities to
understand and combat neurodegenerative diseases.

Components and communication pathways

of the microbiota—gut-brain axis

MGBA components

The MGBA is a complex, integrated system spanning the
gut and brain. Central to this axis is the gut microbiota
— the trillions of commensal microorganisms (bacteria,
viruses, archaea, fungi) that reside primarily in the colon
[17]. The intestinal mucosa forms a critical interface
between these microbes and the host: a single-cell epi-
thelial layer with tight junctions that limit bacterial trans-
location, overlain by mucus and patrolled by immune
cells [18]. Specialized enteroendocrine cells in the gut
lining detect luminal contents and release neuroactive
hormones, while gut-associated lymphoid tissue (GALT)
coordinates immune responses to microbes. Immediately
beneath the epithelium, mucosal immune cells (den-
dritic cells, lymphocytes) continuously sample microbial
antigens and can become activated [19]. Once activated,
these cells and their cytokines circulate systemically,
including to the brain, thereby linking gut immunity to
CNS homeostasis.

Another key component is the enteric nervous system
(ENS) — an extensive network of ~500 million neurons
embedded in the gut wall (sometimes termed the “second
brain”) [20]. The ENS regulates gut motility, secretion,
and blood flow and communicates bidirectionally with
the central autonomic circuits via the vagus nerve and
sympathetic pathways [20]. The vagus nerve is especially
important, providing a direct neural highway between
gut and brainstem: vagal afferent fibers transmit sen-
sory signals from intestinal receptors, while efferent fib-
ers carry brain commands to influence gut activity [21].
Additional sympathetic and spinal afferent nerves con-
nect the gut to the spinal cord, conveying visceral pain
or discomfort and modulating gut immune activity [22].
In the brain, the HPA axis represents a neuroendocrine
arm of the MGBA; it translates stress signals into sys-
temic hormone release (e.g. cortisol) that can alter gut
barrier integrity and immune function [23]. Brain struc-
tures such as the blood—brain barrier (BBB) and resident
microglia also partake in the MGBA, as they respond
to circulating microbial metabolites and inflammatory
mediators; notably, BBB permeability determines which
gut-derived factors can access the CNS parenchyma [24].
In summary, the MGBA comprises: (i) the gut microbi-
ota; (ii) the intestinal barrier and mucosal immune sys-
tem; (iii) circulating immune cells and cytokines; (iv) the
ENS and vagus nerve connecting to (v) central autonomic
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circuits and HPA stress pathways; and (vi) CNS interfaces
(BBB, microglia, etc.) that sense peripheral signals (as
shown in Fig. 1). Disruption of any one component (for
example, gut dysbiosis or a “leaky” gut lining) can rever-
berate throughout this interconnected system.

Communication pathways

Multiple interdependent signaling routes mediate cross-
talk along the MGBA. Four broad categories are classi-
cally described (as shown in Fig. 2-3) [25, 26]:

Neural pathways

Sensory neurons and nerves relay signals between gut
and brain [27]. Chief among these is the vagus nerve,
which rapidly conveys information about gut state to the
brainstem and vice versa. Vagal afferents detect mechani-
cal stretch, nutrients, and microbial molecules in the
gut, triggering brainstem nuclei that influence mood,
appetite, and parasympathetic output. Vagal efferents,
in turn, modulate gastrointestinal secretion, motility,
and even local immune responses [28]. Certain gut bac-
teria can directly stimulate vagal pathways by producing
neurotransmitters or neuromodulators. For example,
microbial metabolites such as y-aminobutyric acid
(GABA), serotonin (5-HT), and histamine can activate
vagal afferent endings or ENS neurons [29, 30]. This pro-
vides a route for microbial byproducts to influence brain
activity in real time. A striking illustration of gut—brain
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neural connectivity is seen in PD: misfolded a-synuclein
protein aggregates, a hallmark of PD, are hypothesized
to originate in the gut and spread to the brain via vagal
nerve fibers in a prion-like fashion [31]. Supporting this,
individuals who underwent early-life vagotomy (surgi-
cal cutting of the vagus) have a lower subsequent risk of
developing PD [32, 33]. Aside from the vagus, sympa-
thetic fibers and spinal afferents also participate, trans-
mitting visceral pain signals and regulating gut immune
and mucus responses [32, 33]. Through these neural cir-
cuits, the gut can influence brainstem and limbic activity
(affecting mood, stress responses, etc.), while brain states
(e.g. stress) can alter gut motility and secretion.

Immune and inflammatory pathways

Gut microbes profoundly shape the host immune system
from development through adulthood. Beneficial com-
mensals generally promote immune tolerance and help
reinforce the intestinal barrier, whereas an overgrowth of
pathogenic bacteria or loss of key symbionts (dysbiosis)
can provoke systemic inflammation [34]. Microbial-asso-
ciated molecular patterns (MAMPs) such as lipopolysac-
charide (LPS) from Gram-negative bacteria can breach
a compromised gut barrier and enter circulation, where
they activate Toll-like receptors (e.g. TLR4) and other
innate immune sensors in peripheral tissues and the
brain [35, 36]. Even low-grade leakage of endotoxin (LPS)
from the gut can trigger chronic neuroinflammation: LPS
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Fig. 2 Bidirectional Communication Between the Gut Microbiota and the Brain. The communication between the gut microbiota and the brain
is bidirectional and involves complex interactions across the nervous, immune, and endocrine systems, mediated by microbial metabolites.

The gut microbiota serves as a critical biological foundation for these interactions, influencing brain function via pathways such as the vagus
nerve, ENS, neurotransmitter release, and the regulation of neuroactive metabolites. Immune system modulation occurs through cytokines,
while neuroendocrine regulation is mediated by intestinal epithelial cells (IECs) and the hypothalamic—pituitary—adrenal (HPA) axis. Dysbiosis,
characterized by the depletion of beneficial metabolites, the accumulation of toxic metabolites, and the imbalance of pathogens, disrupts these
pathways, impairing the blood-brain barrier (8BB) and immune function, which contributes to the initiation and progression of neurological

disorders

in the bloodstream has been shown to activate microglia
in the brain via TLR4/NF-«kB signaling, thereby contrib-
uting to neuronal injury [37]. In parallel, gut-resident T
cells conditioned by the microbiota (for instance, pro-
inflammatory Th17 cells versus anti-inflammatory regu-
latory T cells) can traffic to the CNS [38]. Certain gut
bacteria drive Th17 cell expansion; in mouse models of
MS, colonization with specific segmented filamentous
bacteria induces Th17 cells that infiltrate the CNS and
worsen inflammation [39]. Conversely, short-chain fatty
acids (SCFAs) produced by fiber-fermenting bacteria
foster regulatory T cells (Tregs) that secrete anti-inflam-
matory cytokines like IL-10 [40]. In an experimental
autoimmune encephalomyelitis (EAE) model of MS, a
high-fiber diet that boosts SCFA production expanded
Foxp3™* Tregs, strengthened the gut barrier, and reduced
CNS inflammation and disease severity [41]. Immune
signaling along the MGBA is bidirectional: CNS stress

and inflammation can alter gut immunity via neuroendo-
crine pathways (e.g. stress-induced corticosteroids sup-
press gut immune responses), creating feedback loops
between psychological stress and gut inflammation [42].
Overall, immune-mediated communication allows gut
microbes to influence systemic and brain inflammation,
and likewise permits CNS perturbations to affect intesti-
nal immune homeostasis.

Endocrine and metabolic pathways

The gut is often termed the body’s largest endocrine
organ. Enteroendocrine cells distributed along the intes-
tinal lining sense luminal nutrients and microbial metab-
olites and release hormones and neuropeptides that act
both locally and systemically. For example, peptide YY
and glucagon-like peptide-1 (GLP-1) are released in
response to food intake and influence appetite and glu-
cose metabolism, with receptors in the brain that affect
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satiety and cognitive function [43]. The gut microbiota
modulates levels of these hormones; SCFAs produced
by bacterial fermentation of dietary fiber stimulate
colonic cells to secrete peptide YY and GLP-1, which sig-
nal the brain to regulate appetite and insulin sensitivity
[44]. Another example is serotonin: around 90% of the
body’s serotonin is produced in the gut by enterochro-
maffin cells, and certain commensal bacteria (especially
spore-forming Firmicutes) have been Shown to promote
intestinal 5-HT biosynthesis [45]. Thus, microbial activ-
ity can influence neurotransmitter levels that modulate
mood and cognition. The HPA axis also integrates into
this network: gut microbes can affect cortisol dynamics
by influencing the host’s metabolism of tryptophan into
metabolites like kynurenine that impact HPA feedback
loops [46, 47]. Additionally, microbes produce or con-
sume numerous metabolites — amino acids, bile acids,
choline derivatives, vitamins — which can enter circula-
tion and act on distant organs including the brain [48].
For instance, certain gut bacteria metabolize dietary
choline into trimethylamine (TMA), which the host then
converts to trimethylamine N-oxide (TMAO); TMAO
has been implicated in promoting inflammation and has
been associated with increased risk of stroke and cogni-
tive impairment [44, 49]. Conversely, some microbial
metabolites are neuroprotective: the bacterial produc-
tion of vitamins (like certain B vitamins) in the gut can
support neuronal health [50]. In summary, through a

vast array of chemically diverse compounds, the micro-
biome exerts endocrine-like effects on the host, influenc-
ing metabolic status, stress reactivity, and even synaptic
plasticity.

Microbial neurotransmitters and neuromodulators

Beyond influencing host metabolite and hormone levels,
gut microbes themselves produce numerous small mol-
ecules that can directly affect neuronal function. These
include classical neurotransmitters (GABA, serotonin,
dopamine), short-chain fatty acids (butyrate, propion-
ate, acetate), and other neuromodulators (e.g. tryptophan
metabolites, phenolic compounds) [44]. Many of these
molecules can activate receptors on the vagus nerve or
cross the BBB to act in the brain. For example, microbial
GABA produced in the colon may interact with enteric
or vagal GABA receptors, potentially influencing anxiety-
like behavior in mice [51]. Certain spore-forming gut
bacteria stimulate intestinal serotonin production, which
can alter signaling in the brain and has been linked to
changes in mood and gastrointestinal motility [45]. Bac-
terial metabolites can also modulate neuroplasticity; a
notable case is the production of metabolites that affect
microglial maturation and function [52]. Germ-free mice
(lacking microbiota) show defects in microglial develop-
ment and an exaggerated neuroinflammatory response,
which can be normalized by reintroducing SCFA-pro-
ducing bacteria [13]. This indicates that microbial signals
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are required for proper CNS immune balance. Addition-
ally, some bacterial products may influence protein aggre-
gation processes implicated in NDDs [53]. Emerging
research suggests that bacterial amyloid proteins (pro-
duced by biofilm-forming gut bacteria) might prime the
host’s immune system and cross-seed misfolding of host
proteins like a-synuclein or A, although this remains an
area of debate [54]. On the other hand, beneficial metab-
olites such as butyrate can activate cellular mechanisms
for protein clearance: butyrate readily crosses the BBB
and can inhibit histone deacetylases, thereby activating
gene expression programs that enhance autophagy and
reduce toxic protein aggregates [55]. Indeed, in experi-
mental models, butyrate treatment has been shown to
induce autophagy and improve clearance of misfolded
proteins, as well as improve synaptic and cognitive func-
tion in mice with neurodegenerative pathology [56]. In
summary, the microbiome produces a pharmacopoeia of
neuroactive compounds. These microbial “chemicals” can
act on the ENS and vagus or reach the brain to modulate
neurotransmission, neuroinflammation, and neuronal
health, representing a direct molecular link between gut
bacteria and brain function.

Taken together, these interacting pathways — neural,
immune, endocrine/metabolic, and microbial metabolic
routes — constitute the microbiota—gut—brain communi-
cation network. They provide multiple avenues through
which changes in the gut microbiome can influence cen-
tral processes relevant to neurodegeneration (and vice
versa). In the sections below, we delve into how disrup-
tions in these MGBA pathways have been implicated in
specific neurodegenerative diseases.

Mechanistic links between gut dysbiosis

and neurodegeneration

This section delineates the mechanistic pathways through
which the microbiota—gut—brain axis influences neu-
rodegenerative processes. We highlight immune, meta-
bolic, and neural routes, with emphasis on converging
evidence from experimental and clinical studies.

Neuroinflammation and immune activation

Chronic inflammation is a unifying feature in many
NDDs, and gut microbes are emerging as key modulators
of systemic and CNS inflammatory tone. Dysbiosis (an
imbalanced microbiome) can promote a pro-inflamma-
tory state via several mechanisms [57, 58]. As described
above, increased intestinal permeability (“leaky gut”)
allows LPS and other pro-inflammatory microbial prod-
ucts to enter circulation [59]. In patients with AD and
PD, higher blood levels of LPS and other endotoxins have
been correlated with markers of neuroinflammation and
cognitive decline [60, 61]. Experimentally, peripheral
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administration of LPS in animals induces microglial acti-
vation and can exacerbate amyloid pathology and neuro-
degeneration [62]. Even in humans, low-dose endotoxin
infusion is used as a model to study immune-to-brain
signaling; it causes transient mood and memory impair-
ments accompanied by elevated inflammatory cytokines
in the CNS [63]. Gut microbes also shape the pool of
circulating immune cells [64]. For example, certain
Clostridia in the gut promote the development of Foxp3™
Treg cells that produce IL-10 and restrain inflammation
[65]. Loss of these beneficial microbes could reduce Treg
abundance, tilting the immune system toward a pro-
inflammatory phenotype [66]. In MS, a condition with
autoimmune neuroinflammation, patients often show
a microbiome signature that fosters pro-inflammatory
T cells (like Th17 cells) at the expense of Tregs [67, 68].
Indeed, fecal samples from MS patients, when trans-
planted into germ-free mice, can exacerbate autoimmune
encephalitis, whereas feces from healthy donors are less
pathogenic [69]. Conversely, enriching the gut micro-
biota with fiber-fermenting bacteria increases SCFA pro-
duction and has protective effects: SCFAs signal through
receptors like GPR43/GPR109A on immune cells to
suppress NF-«B activation and induce Tregs [70]. Treat-
ment of mice with sodium butyrate (a bacterial SCFA)
alleviates neuroinflammation in models of AD and MS
by dampening microglial activation and promoting an
anti-inflammatory milieu [71]. Another immunomodula-
tory microbial metabolite is tryptophan-derived indoles,
which activate the aryl hydrocarbon receptor (AhR) on
astrocytes and intestinal immune cells [72]. Lower lev-
els of key indole metabolites have been observed in MS
patients, and their absence is linked to reduced AhR
signaling and impaired gut barrier function [73]. Sup-
plementing such metabolites or probiotic strains that
produce them (e.g. certain Lactobacillus species) could
help restore immune homeostasis [74]. In summary,
gut dysbiosis may contribute to neurodegeneration by
shifting the immune system toward a pro-inflammatory
state, breaching the gut barrier, and chronically activat-
ing microglia and astrocytes in the brain. On the other
hand, a balanced microbiota producing sufficient SCFAs,
tryptophan metabolites, and other immunoregulatory
factors supports an anti-inflammatory, neuroprotective
environment.

Blood-brain barrier and metabolic homeostasis

The integrity of the BBB and the brain’s metabolic envi-
ronment are influenced by the gut microbiota [49].
SCFAs play a complex role here. On one hand, SCFAs
(especially butyrate) strengthen the gut barrier and have
anti-inflammatory effects that indirectly protect the
BBB [75]. Butyrate also can cross into the bloodstream
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and reach the brain, where it serves as an energy sub-
strate for neurons and glia and as an epigenetic regula-
tor (through inhibition of histone deacetylases) [76]. This
epigenetic action tends to enhance the expression of
genes involved in neurotrophic factor production, syn-
aptic plasticity, and cellular stress resistance. In models
of AD, oral butyrate administration improved BBB tight
junction integrity and reduced the infiltration of periph-
eral immune cells into the brain [77]. Butyrate has even
been shown to ameliorate cognitive deficits in AD mice
when given at late stages of disease. On the other hand,
certain SCFAs under specific conditions might contrib-
ute to pathology: for example, a recent study found that
butyrate and propionate can activate the NLRP3 inflam-
masome in human macrophages under inflammatory
stress, suggesting a potential pro-inflammatory role in
some contexts [78, 79]. Nonetheless, overall SCFA deple-
tion (as seen with low-fiber diets or dysbiosis) is generally
associated with worse outcomes in aging and neurode-
generation due to loss of their beneficial gut and brain
effects.

Beyond SCFAs, other microbial metabolites affect brain
metabolism and vascular function. Gut bacteria regulate
bile acid pools and composition; some microbially modi-
fied bile acids (like iso-deoxycholic acid) can cross into
the brain and have been shown to modulate microglial
activity and cholesterol metabolism in neurons [80]. The
gut microbiota also influences circulating levels of amino
acids such as glutamate and glycine, which are key neu-
rotransmitters [81, 82]. Alterations in gut bacteria have
been linked to changes in the serum metabolome in con-
ditions like ALS and PD, including altered levels of amino
acid derivatives that can affect brain excitability or mito-
chondrial function [83, 84]. For example, hyperactivation
of the glutamate system is implicated in ALS and PD,
and some gut-derived metabolites (e.g. propionate) have
been found to support the astrocyte-neuron glutamate—
glutamine cycle and confer neuroprotective effects [85].
Microbial production of vitamins (B vitamins, vitamin
K) and antioxidants (e.g. enterolactone from polyphe-
nols) can also influence neuronal resilience to metabolic
stress [86, 87]. One intriguing recent discovery is that gut
microbes can produce small amounts of ammonia and
other compounds that affect brain metabolism: a 2025
study showed that manipulating the gut microbiome
altered brain amino acid levels and stress susceptibility in
mice, partly via microbe-derived ammonia affecting neu-
rotransmitter cycling [88]. In summary, dysbiosis might
contribute to neurodegeneration by disrupting metabolic
homeostasis — reducing beneficial metabolites (SCFAs,
vitamins) and increasing potentially neurotoxic ones (e.g.
ammonia, TMAQ) — as well as by impairing the integ-
rity of barriers like the BBB. Conversely, maintaining a
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healthy microbiome supports metabolic and vascular
conditions that are conducive to brain health.

Protein misfolding and aggregation

A defining feature of many NDDs is the accumulation
of misfolded, aggregation-prone proteins (AP and tau in
AD, a-synuclein in PD, SOD1/TDP-43 in ALS, etc.) [53].
There are emerging links between the microbiome and
these proteopathic processes. One hypothesis is that bac-
terial amyloids and other proteins might seed or acceler-
ate aggregation of host proteins. Many gut bacteria (e.g.
E. coli, Curli-producing bacteria) secrete amyloid-like
fibers as part of biofilms [89, 90]. These bacterial amy-
loids can be structurally similar to neuronal amyloids and
may trigger cross-seeding or prime the innate immune
system in a way that makes it overreact to misfolded host
proteins. In PD models, oral administration of Curli-
producing bacteria enhanced a-syn aggregation and
motor deficits in mice, whereas germ-free or antibiotic-
treated mice had less a-syn pathology [91, 92]. Another
line of evidence comes from the “prion-like” transmis-
sion of a-syn: as noted earlier, pathology may start in the
gut and propagate via the vagus nerve to the brainstem
[93]. Gut microbiota composition can modulate this pro-
cess — for example, certain microbial metabolites might
affect a-syn misfolding or clearance [94]. A study in mice
showed that specific SCFAs accelerated a-syn aggrega-
tion and microglial activation, whereas germ-free mice
had delayed pathology [95]. However, the role of SCFAs
in protein aggregation is complex (beneficial in some
contexts, possibly detrimental in others as discussed)
[96]. Another important mechanism is autophagy, the
cellular waste-clearance process that helps remove mis-
folded proteins [97]. Some microbiota-derived signals
promote autophagy: butyrate can induce autophagy in
neurons and glia by inhibiting HDACs and activating
pro-autophagic genes [98]. Propionate has also shown
neuroprotective effects via enhancing remyelination and
possibly facilitating debris clearance in demyelinating
disease models [99]. Moreover, gut microbes influence
systemic levels of acetate, which was recently shown to be
crucial for microglial phagocytosis of amyloid; germ-free
or antibiotic-treated mice had impaired microglial clear-
ance of AP plaques, which could be restored by supply-
ing acetate [100]. There is also evidence that peripheral
inflammation driven by gut dysbiosis can reduce expres-
sion of key protein degradation systems in the brain (such
as ubiquitin—proteasome pathway and autophagy genes),
thereby accelerating the accumulation of toxic proteins
[101]. On a therapeutic note, some microbiota-targeted
treatments have reduced protein aggregates in models:
long-term broad-spectrum antibiotics reduced A depo-
sition and microglial reactivity in an AD mouse model,
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and recolonization with a simplified microbiota reversed
some of these effects, indicating that specific microbial
communities can either exacerbate or ameliorate proto-
pathic cascades [102]. In summary, while research is still
early, it appears gut microbes can influence protein mis-
folding disorders both indirectly (via inflammation and
metabolism) and directly (via amyloid cross-seeding and
modulation of protein clearance pathways). This adds yet
another layer to how the MGBA can shape neurodegen-
erative disease trajectories.

Epigenetic and neuronal signaling pathways
The gut microbiome can affect gene expression and sign-
aling pathways in the brain through epigenetic modifica-
tions and receptor-mediated signaling. A prime example
is histone deacetylase (HDAC) inhibition by SCFAs like
butyrate [103—-105]. HDAC inhibition leads to a more
permissive chromatin state, enhancing transcription
of genes involved in neuronal survival, synaptic plastic-
ity, and memory formation [106]. This is one reason why
butyrate is being explored as a cognitive enhancer and
neuroprotective agent — it essentially acts as an epige-
netic modulator derived from the microbiome. In aging
rodents, butyrate administration improved learning and
memory, presumably by upregulating brain-derived neu-
rotrophic factor (BDNF) and other plasticity-related pro-
teins [76, 107]. Another SCFA, acetate, has been shown
to enter the brain and become a substrate for acetyl-CoA
in neurons and glia, thereby influencing histone acety-
lation and energy metabolism in the CNS [108]. The
microbiota also influences DNA methylation patterns via
production of methyl donors and modulators (e.g. folate
producers in the gut can affect host methylation capacity)
[109-111]. Such epigenetic changes might impact genes
related to neurodegeneration [112, 113]. For example,
hyperhomocysteinemia (linked to gut microbial metab-
olism) can alter DNA methylation in the brain and has
been associated with increased AD pathology [114].
Microbial metabolites can engage specific neuronal
receptors as well. G protein-coupled receptors (GPCRs)
in the brain and on peripheral nerves can respond to
gut-derived ligands [115]. Niacin receptors (HCAR2) on
microglia respond to butyrate and other SCFAs, trig-
gering anti-inflammatory signaling [116]. Free fatty
acid receptors (FFAR2/3) on peripheral afferents detect
SCFAs and can modulate serotonin release and appe-
tite signals [117]. TGR5 and FXR, receptors for bile
acids, are expressed in brain cells and on vagal afferents;
microbial alterations of bile acids can therefore influence
these receptors and downstream pathways affecting glu-
cose metabolism and inflammation in the brain [118].
Additionally, pattern recognition receptors like TLR2
and TLR4 on microglia can be chronically stimulated or
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desensitized by repetitive exposure to microbial MAMPs
translocating from the gut, potentially affecting how
microglia respond to misfolded proteins (either by over-
reacting and causing bystander damage, or by entering a
tolerant state that might impair clearance of aggregates)
[71, 119]. Finally, gut microbes can affect neurogenesis:
a fascinating study showed that fecal transplants from
young mice into old mice improved neurogenesis and
cognition in the old mice [120]. The effect was attributed
to microbial metabolites that promoted a more youth-
ful systemic environment (for example, boosting the
production of certain short-chain fatty acids and reduc-
ing pro-inflammatory cytokines) [121]. Thus, through
a combination of epigenetic reprogramming, receptor-
mediated signaling, and modulation of neurotransmitter
systems, the gut microbiome can influence fundamental
neuronal processes like synaptic plasticity, neurogenesis,
and cell survival. Disruption of these influences by dysbi-
osis could thereby contribute to the synaptic dysfunction
and neuronal loss seen in neurodegenerative diseases.

Collectively, a dysregulated MGBA can promote neu-
rodegeneration via multiple converging mechanisms:
chronic peripheral and central inflammation, impaired
barrier and metabolic support for the brain, accelerated
protein misfolding, and diminished neuroprotective
signaling. Conversely, maintaining or restoring a healthy
microbiome may bolster the brain’s resilience by reducing
inflammation, enhancing protein clearance, and provid-
ing neurotrophic signals. We next turn to evidence from
specific disorders that exemplify these general principles.
In summary, these mechanistic insights underscore the
multifactorial nature of the MGBA, where immune acti-
vation, metabolic signaling, and neuronal communica-
tion collectively contribute to disease progression. Such
complexity highlights potential nodes for therapeutic
intervention.

Microbiome alterations in specific
neurodegenerative diseases

Following the delineation of mechanistic links, the next
consideration is how these pathways vary across specific
neurodegenerative diseases. In this section, we system-
atically review disease-specific microbiome alterations,
with a focus on Alzheimer’s, Parkinson’s, and related
disorders.

Alzheimer’s Disease (AD)

AD is the most common dementia, characterized by
extracellular amyloid-p (AP) plaques, intracellular tau
tangles, and progressive cognitive decline [122, 123].
Over the past decade, multiple studies have revealed that
AD patients harbor an altered gut microbiome compared
to age-matched cognitively normal individuals [122]. A
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consistent finding is reduced overall microbial diversity
in AD, along with a phylum-level shift: the proportion of
Firmicutes (typically beneficial fiber-degrading bacteria)
tends to be decreased, while Bacteroidetes are increased
[124]. Levels of anti-inflammatory genera such as Fae-
calibacterium and Eubacterium rectale are often lower in
AD, whereas certain pro-inflammatory or opportunistic
taxa (like Escherichia/Shigella) are enriched [125, 126].
For example, one study found that cognitively impaired
elderly with brain amyloidosis had Escherichia/Shigella
overabundance and depleted E. rectale; notably, those
changes correlated with higher peripheral inflamma-
tion (plasma cytokines) [127, 128]. This suggests a link
between gut dysbiosis, systemic inflammation, and AD
pathology. Indeed, neuroinflammation is a prominent
feature of AD, and as discussed, translocated gut micro-
bial products (e.g. LPS) have been detected at higher
levels in AD patient brains and are known to activate
microglia.

Mechanistically, several MGBA pathways appear to
be involved in AD. In terms of immune modulation,
AD patients often show peripheral immune abnormali-
ties that could originate in the gut [129]. There is evi-
dence of increased gut permeability in AD, which might
allow more pro-inflammatory molecules to circulate
[127]. SCFA deficits might also play a role: fecal levels
of butyrate and other SCFAs are reported to be reduced
in AD patients, which could exacerbate neuroinflamma-
tion by depriving microglia of anti-inflammatory signals
[130]. Supporting this, germ-free AD model mice (which
lack SCFAs and other microbial signals) have impaired
microglial maturation and reduced plaque clearance,
leading to greater amyloid accumulation [131, 132].
Recolonization of these mice with a complex micro-
biota (especially if it includes SCFA producers) partially
restores microglial function and reduces AP burden
[133]. Another study showed that antibiotics that drasti-
cally alter the gut microbiome can modulate amyloidosis:
short-term antibiotic treatment in an AD mouse model
altered gut bacteria and resulted in reduced plaque depo-
sition and lower neuroinflammation [134]. However, only
certain combinations of antibiotics had this effect, imply-
ing that specific microbial communities or functions are
pathogenic, whereas others may be protective.

Metabolic pathways are also relevant in AD. The
gut microbiota influences levels of bile acids, and AD
patients have altered bile acid profiles in serum and
cerebrospinal fluid (with higher ratios of toxic vs. neu-
roprotective bile acids) [135]. This might be due to
microbial changes; some gut bacteria convert primary
bile acids into secondary forms that can cross into the
brain and activate receptors like TGR5 on glia, affect-
ing inflammation and glucose metabolism in the brain
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[135]. A recent multi-omics study of AD patients iden-
tified a network connecting gut microbiome changes to
fecal metabolites to brain imaging markers [136]. Nota-
bly, imbalances in microbial metabolites such as imida-
zole propionate and y-aminobutyric acid (GABA) were
linked to reduced brain glucose metabolism and corti-
cal thinning in AD [137]. This suggests that gut-derived
metabolites could contribute to the energy deficits and
synaptic dysfunction observed in AD.

Another intriguing MGBA aspect in AD is the direct
effect of gut microbes on amyloid and tau pathology.
Some gut bacterial metabolites can interfere with Af
aggregation [138]. For instance, certain microbial poly-
phenol metabolites inhibit AP fibrillization in vitro
[139]. Conversely, E. coli producing the Curli amyloid
exacerbated AP deposition in one mouse study [91].
Additionally, chronic infection or dysbiosis might drive
peripheral inflammation that reduces the clearance of
AP from the brain via the glymphatic system and BBB
transporters [140]. There is also emerging evidence
that the gut microbiome can affect tau pathology, pos-
sibly through inflammation-mediated kinase activation
(microbial LPS and cytokines can activate kinases that
phosphorylate tau) [140].

From a translational perspective, these findings
raise the possibility of microbiome-based biomark-
ers and therapies in AD. Some have proposed that
specific microbial taxa or metabolite profiles in stool
could serve as early indicators of AD risk or progres-
sion [141]. For example, a high abundance of pro-
inflammatory bacteria (like Escherichia) coupled with
low SCFA producers might predict faster cognitive
decline [130]. Therapeutically, small trials in humans
are underway: one randomized trial in mild AD is
testing an oral broad-spectrum antibiotic followed by
FMT to “reset” the microbiome [142]. In animal mod-
els, similar approaches have shown that repopulat-
ing the gut with a youthful or diverse microbiome can
improve cognitive function [143]. Probiotics have also
shown promise (discussed further in the Therapeutic
section). In one placebo-controlled trial, AD patients
who received a daily multi-strain probiotic for 12 weeks
had significantly better Mini-Mental State Exam scores
and lower blood inflammatory markers than those on
placebo [144]. While these improvements were modest,
they demonstrate that manipulating the gut can impact
inflammation and cognition in AD.

In summary, AD is accompanied by a distinct gut
microbiome signature that likely contributes to dis-
ease via increased inflammation, reduced neuroprotec-
tive metabolites, and possibly direct effects on protein
pathology. Therapies aimed at restoring a healthy micro-
biome or blocking deleterious MGBA signals (like LPS
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or certain bile acids) are being explored as novel ways to
slow AD progression.

Parkinson'’s Disease (PD)

PD is a movement disorder marked by loss of dopa-
minergic neurons in the midbrain and accumulation of
a-synuclein aggregates (Lewy bodies) [145, 146]. Gastro-
intestinal dysfunction is an early and common feature of
PD — up to 80% of PD patients experience chronic con-
stipation and other GI issues, often years before motor
symptoms [147]. This prodromal phase, along with
Braak’s hypothesis of an ascending gut-to-brain spread of
a-synuclein, has drawn intense interest to the MGBA in
PD [148, 149]. Numerous studies have now characterized
the PD gut microbiome, consistently finding dysbiosis
relative to neurologically normal controls [150]. A hall-
mark is the depletion of bacteria that produce SCFAs and
support mucosal health. For instance, members of the
Prevotellaceae family (such as Prevotella genus) are sig-
nificantly reduced in many PD cohorts [151, 152]. Prevo-
tella are fiber-fermenters that produce butyrate and also
contribute to mucin synthesis in the gut; their paucity in
PD may lead to less SCFA availability and a thinner pro-
tective mucus layer. Indeed, low fecal SCFA levels have
been documented in PD, which could compromise gut
barrier integrity and immune regulation [153]. In paral-
lel, PD microbiomes often show an overrepresentation
of certain opportunistic or pro-inflammatory microbes
[154]. Akkermansia wmuciniphila, a mucin-degrading
bacterium, is frequently enriched in PD stool samples
[155]. While Akkermansia is often considered a benefi-
cial microbe in metabolic contexts, in PD its overgrowth
might reflect (or contribute to) excessive mucin erosion
and gut barrier dysfunction [156]. Increased Enterobac-
teriaceae (a family that includes endotoxin-producing
Gram-negatives) has also been reported and was cor-
related with the severity of postural instability and gait
difficulty in one study [157]. In short, the PD gut micro-
biome tends to harbor fewer “good” SCFA-producing,
anti-inflammatory bugs and more “bad” pro-inflamma-
tory, mucus-depleting bugs.

How might these changes influence PD pathogenesis?
One major pathway is neuroinflammation. Postmortem
and Cerebrospinal Fluid (CSF) studies show PD has an
inflammatory component, with activated microglia and
elevated cytokines [158, 159]. Gut-derived LPS or pepti-
doglycans could be driving this if the intestinal barrier is
compromised. Elevated intestinal permeability has been
observed in PD patients, along with markers of endo-
toxemia in the blood [160]. The MGBA immune links
described earlier (Th17 cells, etc.) are pertinent too — PD
patients have been found to have increased Th17 cells in
circulation, and recent research implicates gut bacteria
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in shaping this PD-specific immune profile [161]. For
example, Segmented Filamentous Bacteria (SFB) in the
gut potently induce Th17 cells; if PD dysbiosis includes
SFB or others with similar effects, it could promote CNS
inflammation that accelerates neurodegeneration [162].
Conversely, a lack of SCFA-producing Roseburia and
Faecalibacterium (often reduced in PD) means fewer
Tregs to keep inflammation in check [163].

Another key link is the vagal route of a-synuclein
transport. As noted, a-syn pathology in PD might start
in the gut (possibly triggered by a pathogen or toxin)
and spread via the vagus nerve. Supporting this, a-syn
aggregates have been identified in the enteric nervous
system and vagus of early PD patients [164]. If the gut
microbiome is altered, it might influence this process. For
example, certain microbial metabolites (like SCFAs) can
promote o-syn aggregation in enteric neurons, as shown
in one mouse study [95]. Additionally, dysbiosis-induced
intestinal inflammation could increase local o-syn
expression (since a-synuclein is expressed in enteric neu-
rons and is upregulated by inflammation) [165]. Once
misfolded a-syn is present in the gut, it could propagate
to the CNS more readily if vagal trafficking is enhanced
by gut inflammation or hyperactivity of the ENS [166].
Epidemiologically, full truncal vagotomy (cutting vagus
connections to gut) has been associated with lower PD
incidence, hinting that in some patients the gut-to-brain
route is critical [33].

Metabolic and endocrine factors are also at play. Con-
stipation and slow transit in PD alter the fermentation
patterns in the colon, potentially leading to increased
production of metabolites like TMAO (from protein
fermentation) which may aggravate neuroinflammation
[167]. The microbiome can influence drug metabolism
relevant to PD as well — a striking example is levodopa,
the primary PD medication. Certain gut bacteria (e.g.
Enterococcus faecalis) possess an enzyme that decarboxy-
lates levodopa in the intestine before it can be absorbed,
effectively reducing the drug’s availability [168, 169]. A
2025 study discovered this bacterial enzyme pathway and
even identified an inhibitor that could block it [170, 171].
This finding means that differences in gut microbiome
might contribute to the notorious variability in patient
response to levodopa; it also suggests a possible thera-
peutic angle (pairing Parkinson’s meds with microbiome-
targeted adjuvants to improve efficacy).

On the flip side, PD therapies and diet can affect the
microbiome, creating feedback loops. For instance, some
PD patients take amine oxidase inhibitors or anticholin-
ergics that alter gut motility and bacterial growth [172].
Many PD patients also consume high-protein diets (to
avoid losing muscle), which can shift the microbiome
toward more proteolytic species (increasing potentially
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harmful metabolites like p-cresol and phenols) [173].
Investigations are underway to see if dietary interven-
tions (like ketogenic or Mediterranean diets) can benefi-
cially remodel the PD microbiome. A pilot ketogenic diet
trial in PD suggested possible motor improvement, which
might be partially due to changes in gut bacteria and
their metabolites (ketone bodies can influence gut micro-
bial composition) [174]. However, such extreme diets are
hard to maintain, so more moderate dietary approaches
are being studied.

From a clinical trial perspective [175], multiple micro-
biota-targeted interventions are being tested in PD. Ran-
domized trials of various probiotic formulations have
shown improvements mainly in gastrointestinal symp-
toms (e.g. reduced constipation, bloating) and some
modest benefits in motor scores [176]. A recent meta-
analysis concluded that probiotics significantly improve
bowel movement frequency in PD and may provide a
slight improvement in Unified Parkinson’s Disease Rating
Scale (UPDRS) motor scores [177]. FMT has also moved
into clinical trials for PD: a Phase II placebo-controlled
trial (single nasojejunal infusion of donor stool) in early
PD reported a mild but Statistically Significant improve-
ment in motor symptoms at 12 months compared to
sham transplant. Specifically, treated patients improved
by~5.8 points on the UPDRS-III (motor) versus~ 2.7
points in controls, with benefits sustained for at least a
year [175]. This suggests that altering the PD gut micro-
biome can indeed translate into clinical benefit, albeit
modest. Ongoing studies are examining repetitive FMT
dosing and different delivery routes. Other approaches
include antibiotics like rifaximin (a non-absorbed anti-
biotic) to reduce overgrowth of potentially harmful bac-
teria; a small open-label trial of rifaximin showed some
improvement in PD motor function and gut symptoms,
but long-term use is not practical due to antibiotic resist-
ance and microbiome disruption [178].

In summary, PD provides a clear example of a neuro-
degenerative disease wherein the MGBA is intimately
involved. Gut microbiota changes in PD can contribute
to a-syn pathology propagation, modulate neuroinflam-
mation, influence drug metabolism, and exacerbate auto-
nomic symptoms. Conversely, interventions to rebalance
the microbiome hold potential to alleviate both motor
and non-motor PD manifestations. Future research in
PD is increasingly focused on identifying specific micro-
bial metabolites or strains that could be targeted to slow
neurodegeneration (for instance, boosting SCFA produc-
ers or inhibiting bacterial enzymes that interfere with
host molecules). PD, perhaps more than any other NDD,
exemplifies the concept that neurological diseases are not
restricted to the brain but are truly systemic disorders
involving the gut-brain axis.
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Multiple Sclerosis (MS)

MS is an immune-mediated disease characterized
by autoreactive inflammation, demyelination of CNS
axons, and progressive neurodegeneration [179]. It has
features of both an autoimmune disorder and a neuro-
degenerative condition, which makes it a particularly
interesting case for the MGBA [180]. In fact, MS was
one of the first CNS diseases where gut bacteria were
shown to have a causal influence in animal models: in
2011, it was demonstrated that segmented filamentous
bacteria in the gut could trigger CNS-autoreactive
Th17 cells and provoke an MS-like disease in mice
[181]. Since then, multiple studies have found that the
microbiome of MS patients differs from that of healthy
individuals in ways that could promote inflammation
[182]. Commonly reported alterations include a reduc-
tion in butyrate-producing bacteria such as Faecalibac-
terium prausnitzii and Butyricicoccus, and an increase
in taxa that can induce pro-inflammatory responses
(like Akkermansia muciniphila, Prevotella spp. in some
studies, or Methanobrevibacter and Eggerthella in oth-
ers) [183]. One study found that MS patients had higher
levels of Akkermansia and Acinetobacter and lower
Parabacteroides compared to controls, and when these
microbial communities were transferred to germ-free
mice, the mice developed more severe EAE (the mouse
model of MS) [184]. Conversely, colonization of mice
with certain commensals from healthy human guts can
protect against EAE [185]. For example, Prevotella his-
ticola, a human gut commensal, was shown to suppress
CNS autoimmunity in mice, increasing regulatory T
cells and suppressing Th17 cells [186].

In people with MS, immunological profiles correlate
with gut microbiome composition. A notable finding
is the higher frequency of pro-inflammatory Th17 cells
in the gut and blood of MS patients, which correlates
with microbiota alterations [67]. Cosorich et al. (2017)
observed that MS patients with active disease had an
abundance of Akkermansia and Ruminococcus (which
can erode the mucous barrier) and this was accompanied
by elevated Th17 cells in the gut mucosa [67]. The impli-
cation is that certain bacteria promote a Th17-skewed
response that can migrate to the CNS and attack myelin.
Additionally, reduced levels of SCFA-producers in MS
may lead to a deficit in SCFAs like butyrate and propion-
ate that normally help maintain Treg cells [187]. Indeed,
a recent clinical study demonstrated that giving oral pro-
pionate (a microbial metabolite) to MS patients increased
their peripheral Treg counts and was associated with a
lower annual relapse rate over the ensuing 3 years [188].
This indicates that augmenting the function of missing
beneficial microbes can tip the immune balance toward
regulation rather than autoimmunity.
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Beyond T cells, the gut microbiome might influence
B cells and antibody responses in MS as well. Some gut
bacteria share antigens that mimic myelin proteins,
potentially triggering cross-reactive antibodies (a con-
cept known as molecular mimicry) [189]. There is some
evidence of IgA and IgG antibodies against gut com-
mensals being elevated in MS, which might reflect an
aberrant immune surveillance of the gut microbiota that
spills over to CNS-directed immunity [190]. Addition-
ally, metabolites from gut bacteria can affect microglia
in MS [191]. For instance, tryptophan metabolites acting
on the aryl hydrocarbon receptor (AhR) are decreased
in MS, and stimulating AhR in astrocytes and microglia
has been shown to reduce CNS inflammation [192, 193].
Certain Lactobacillus strains produce AhR ligands; not
surprisingly, Lactobacillus is often found at lower abun-
dance in MS microbiomes, and giving probiotic Lactoba-
cilli in EAE ameliorates disease partly via AhR activation
in the gut and CNS [194, 195].

Gut barrier integrity is another factor: MS patients in
remission versus flare have been noted to have differ-
ences in fecal microbiota that may impact gut perme-
ability. During active disease, higher levels of Eggerthella
(a genus associated with intestinal inflammation) have
been found, which might loosen the gut barrier and allow
more immune activation [184]. A “leaky” gut in MS could
enable translocation of bacterial fragments that activate
innate immunity (e.g. LPS activating microglia via TLR4
as earlier described) [196]. Some MS patients also have
co-existing inflammatory bowel disease or irritable bowel
syndrome at higher rates than the general population,
hinting at shared genetic or environmental factors affect-
ing gut inflammation [197].

From a therapeutic standpoint, there is excitement
about microbiome modulation in MS. Dietary interven-
tions rich in fermentable fiber have shown immuno-
logical benefits in MS: a high-fiber diet increased SCFA
levels, expanded Tregs, and improved EAE severity [198].
Human data aligns with this — MS patients who adhere
to a Mediterranean-style diet (high fiber and unsaturated
fats) tend to have lower disability scores and less inflam-
matory markers, though confounding lifestyle factors
exist [199]. Probiotic supplementation in MS has been
tested in several small trials [200]. A 2023 meta-analysis
of these trials concluded that probiotics (usually multi-
strain combinations of Lactobacillus and Bifidobacte-
rium) led to a significant reduction in pro-inflammatory
cytokines (like TNF-a and IL-6) and a slight improve-
ment in patients’ Expanded Disability Status Scale
(EDSS) scores [201]. One representative RCT found that
a 12-week probiotic regimen in MS decreased IL-17 and
increased IL-10 levels, indicating a shift toward an anti-
inflammatory profile [202]. FMT is also being explored:
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an open-label trial of FMT in MS demonstrated safety
and hinted at some improvements in gut microbiome
diversity and fatigue scores, and a placebo-controlled
Phase I FMT trial in progressive MS is currently under-
way to assess impacts on MRI lesions and clinical out-
comes [203, 204].

Because MS straddles the immune/degenerative divide,
combining microbiome therapy with existing immu-
nomodulatory drugs is an area of interest. One study
gave a probiotic alongside an MS immunotherapy and
reported an augmented expansion of Tregs compared to
drug alone [205]. Another intriguing approach is using
microbial metabolites as adjuncts: as mentioned, oral
propionate supplementation led to fewer relapses and
increased Tregs in a cohort of MS patients [206]. There
are plans to test butyrate supplements as well, given pre-
clinical evidence that butyrate reduces demyelination and
enhances remyelination in the CNS. PB-TURSO (sodium
phenylbutyrate + taurursodiol) Slowed AISFRS-R decline
in the phase 2/3 CENTAUR RCT (basis for 2022 FDA
approval) but failed in the phase 3 PHOENIX trial and
was voluntarily withdrawn from U.S./Canada in 2024;
targets HDAC/ER-stress pathways rather than the micro-
biome perse [207]. In MS, evidence to date does not show
that TUDCA monotherapy reduces brain atrophy; rather,
higher baseline bile acid levels correlate with slower atro-
phy, and a small randomized TUDCA study established
safety and biologic target engagement without demon-
strable clinical or imaging efficacy [208].

In conclusion, MS is strongly influenced by gut micro-
biota, with evidence at the molecular, cellular, and clini-
cal levels. The microbiome can drive autoimmunity
(through Th17 cells, molecular mimicry, and pro-inflam-
matory metabolites) or conversely promote tolerance and
tissue repair (through SCFAs, Tregs, and neuroprotective
metabolites). MS thus exemplifies how an imbalance in
the MGBA can contribute to both initiation and progres-
sion of a neurologic disease. Targeting the microbiota in
MS holds dual promise: calming the aberrant immune
attack and simultaneously fostering a more neuroprotec-
tive CNS environment. Early clinical studies are encour-
aging, but larger trials will be needed to determine if
microbiome therapies can meaningfully alter the course
of MS beyond the effects of standard immunomodula-
tory drugs.

Amyotrophic Lateral Sclerosis (ALS)

ALS is a rapid and fatal neurodegenerative disease affect-
ing motor neurons, leading to paralysis [209]. Unlike AD,
PD, or MS, the role of the MGBA in ALS is only begin-
ning to be understood, but recent research suggests the
gut microbiome may influence ALS progression and
possibly patients’ metabolic status [210]. Clinically, ALS
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patients often have hypermetabolism and GI symptoms
like weight loss, which could both affect and be affected
by gut microbes [211]. Fecal microbiome analyses have
found dysbiosis in ALS, though findings are not entirely
consistent across studies (perhaps due to different diets
and progression rates in patients) [212]. Common obser-
vations include a reduction in certain beneficial genera
(such as butyrate producers Roseburia and Faecalibacte-
rium) and an increase in pro-inflammatory genera (like
Escherichia or Oscillospira in some reports) [213]. One
study reported that ALS patients had signs of intestinal
inflammation and dysbiosis with a shift toward microbes
that can induce oxidative stress and reduce gut barrier
function [214].

Animal models of ALS have provided stronger evi-
dence for MGBA involvement. In the SOD19%** trans-
genic mouse (a common ALS model), researchers
observed that the mice develop an altered microbiome
even before symptom onset [83]. Moreover, rendering
these ALS mice germ-free or treating them with antibi-
otics significantly accelerated their motor neuron degen-
eration, implying that some aspect of the microbiome
is beneficial in ALS [83]. A groundbreaking 2019 study
demonstrated that colonizing ALS mice with Akkerman-
sia muciniphila (a mucin-degrading bacterium usually
considered pro-inflammatory in PD/MS contexts) actu-
ally ameliorated ALS progression in the mice [83]. The
reason turned out to be metabolic: Akkermansia pro-
duces nicotinamide (vitamin B3) as a metabolite, and nic-
otinamide levels were low in the ALS mice (and in ALS
patients) [215]. Nicotinamide supplementation improved
motor neuron survival in the mice, suggesting that Akker-
mansia was beneficial by supplying this neuroprotective
metabolite. This finding is striking because Akkermansia
was mentioned as potentially harmful in PD/MS, yet here
it had a protective effect — highlighting that the impact
of a given microbe can vary greatly depending on disease
context and metabolic needs.

Other commensals have been implicated in ALS mod-
els as well. For example, Butyrate-producing bacteria
might be beneficial in ALS (butyrate has neuroprotective
properties, as described) [216]. In one study, ALS mice
given a butyrate-producing bacterial cocktail showed
delayed symptom onset and reduced neuroinflamma-
tion [217]. Another study found that Parabacteroides
distasonis and Ruminococcus torques were overabun-
dant in ALS mice and appeared to have adverse effects,
whereas Akkermansia stood out as beneficial [83]. This
suggests that selectively augmenting or inhibiting certain
microbes could change disease outcomes. The mecha-
nisms likely involve immune modulation (microglia
in ALS can adopt a neurodegenerative phenotype that
might be restrained by microbial signals) and metabolic
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support (providing nutrients like nicotinamide or SCFAs
to neurons and glia) [214, 218]. In fact, a recent study
reported that the microbiome in ALS mice helps restrain
pro-inflammatory microglia, which is opposite to what
happens in AD models [219]. So in ALS, rather than driv-
ing pathology, the baseline microbiome might be trying
to counteract it, and losing key microbes removes that
brake on microglial activation.

Clinically, there are hints that dietary and microbiome
interventions could help ALS patients. ALS patients who
consume high-calorie, high-fat diets have been noted to
survive longer on average, possibly because it combats
weight loss and maybe alters the microbiome to a more
energy-extracting configuration [220]. In a small trial,
ALS patients on a hypercaloric diet had a slower func-
tional decline than those on a normal diet. Such a diet
often increases Akkermansia in the gut (since Akkerman-
sia thrives on mucin when fiber is low and fats are high),
which as mentioned might produce nicotinamide and
other beneficial compounds [211]. Probiotic trials in ALS
are still in early stages. An ongoing pilot study is testing
a multi-strain probiotic in ALS to see if it can improve
GI function or inflammation [221]. No efficacy results
are available yet, but safety is expected to be fine as in
other populations [222]. FMT is also being considered
— at least one case report described an ALS patient get-
ting FMT, and anecdotal notes suggested some transient
improvement in gastrointestinal symptoms and possibly
motor function, but rigorous data are lacking. A planned
trial of FMT in ALS will primarily look at tolerability and
microbiome engraftment [223].

It is worth noting that one of the recently approved
ALS therapies (sodium phenylbutyrate+TUDCA, as
mentioned earlier) highlights the intersection of micro-
biome-related metabolism and neurodegeneration [224].
Phenylbutyrate is an HDAC inhibitor (similar action to
butyrate from microbes) and TUDCA is a bile acid that
can modulate gut microbiota composition as well as
reduce ER stress in neurons [225]. This combination was
shown to slow ALS progression modestly in trials. While
not explicitly a microbiome therapy, it underlines manip-
ulating metabolites common to host-microbe metabo-
lism can impact ALS.

In summary, research in ALS suggests the gut microbi-
ota can influence the pace of neurodegeneration and the
metabolic state of the host. In contrast to PD/MS, where
certain bacteria exacerbate disease, ALS might be a case
whereas enhancing specific microbial functions (like vita-
min production) is key. Given ALS’s rapid course, any
stabilizing effect from the microbiome could be signifi-
cant. The field is young, but ALS patients might one day
receive personalized microbiome-based adjuncts — for
example, a consortium of bacteria tailored to produce
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neuroprotective metabolites or to reduce neurotoxic
ones — as part of a broader therapeutic regimen. Much
remains to be learned, especially how to maintain benefi-
cial microbes in patients who often have difficulty eating
and maintaining gut health due to their illness. Nonethe-
less, ALS underscores that even diseases without a clear
immune component can be shaped by the gut microbi-
ome through metabolic and glial-modulating pathways.

Microbiota-targeted therapeutic strategies

and clinical trials

Building upon mechanistic understanding, this sec-
tion synthesizes interventional strategies targeting the
MGBA. We cover dietary approaches, probiotics, FMT,
and pharmacological agents, evaluating both their biolog-
ical plausibility and clinical evidence. Given the evidence
linking gut dysbiosis with neurodegenerative disease
mechanisms, a variety of strategies are being pursued to
modulate the microbiota—gut—brain axis for therapeutic
benefit (Fig. 4). Broadly, interventions fall into a few cat-
egories: dietary modifications and prebiotics, probiotic
supplementation, fecal microbiota transplantation, direct
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microbial metabolite (postbiotic) supplementation, and
emerging approaches like phage or small-molecule ther-
apies targeting microbial pathways. The goals of these
strategies are typically to restore a healthy microbial
community, enhance production of beneficial microbial
metabolites, and/or reduce levels of pro-inflammatory
or neurotoxic microbial products. Table 1 provides an
overview of representative clinical trials testing MGBA-
targeted interventions in neurodegenerative diseases.

Dietary interventions

Consistent with the taxonomy outlined in Sect. 5.1, we
first consider dietary modulation as the foundational,
patient-centered lever for long-term ecosystem steer-
ing. Diet establishes the ecological “set point” on which
targeted microbial therapeutics can engraft and per-
sist; Sects. 5.3.2 and 5.3.3 evaluate probiotics/prebiotics
and FMT within this context. Diet is a primary shaper
of the gut microbiome and a feasible, patient-centered
therapeutic lever. Plant-forward patterns rich in fer-
mentable fiber and polyphenols (e.g., Mediterranean or
plant-based diets) are associated with a more eubiotic

Current and future microbiome-based strategies for treating

neurological diseases
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Fig. 4 Therapeutic strategies targeting the MGBA. Interventions include probiotics, prebiotics, dietary regulation, fecal microbiota transplantation

(FMT), bacteriophages, engineered bacterial strains, and metabolite-based therapies. The figure summarizes current approaches and their proposed
mechanisms of action on central and peripheral MGBA components
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microbiome, increased production of short-chain fatty
acids (SCFAs), and improved gut-barrier integrity. Epi-
demiological studies link higher adherence to Mediter-
ranean-type diets with lower risk of Alzheimer’s disease
(AD) and Parkinson’s disease (PD) and with slower cogni-
tive decline [229-231]. These patterns emphasize fruits,
vegetables, whole grains, legumes, and fish—sources of
fiber and polyphenols that gut bacteria convert into anti-
inflammatory metabolites [232, 233]. Despite adherence
challenges, clinical studies report encouraging signals;
for example, a modified Mediterranean-type intervention
in mild cognitive impairment (MCI) increased microbi-
ome diversity and reduced inflammatory markers [232,
234, 235]. In PD, a ketogenic diet trial (very high fat, low
carbohydrate) is underway, hypothesizing shifts in the
microbiome/metabolome (elevated ketones and possibly
Akkermansia) with potential motor benefits [236].

In practice, dietary modification functions as a foun-
dational, low-risk therapy that complements targeted
microbial therapeutics: it can create a gut environment
more receptive to colonization by probiotics/prebiotics
and to sustained engraftment after FMT (see Sects. 5.2.2
and 5.2.3). Many clinicians advocate fiber-rich, omega-
3-containing patterns such as the MIND diet—a Medi-
terranean/DASH hybrid tailored for brain health—which
may simultaneously modulate the microbiome, provide
neuroprotective nutrients, and reduce vascular risk fac-
tors relevant to neurodegeneration [237, 238]. Practical
considerations include gradual fiber titration to minimize
gastrointestinal symptoms and individualized support to
improve adherence.

Microbial therapeutics

Microbiota-targeted therapeutic strategies can be organ-
ized into a pragmatic taxonomy spanning (i) dietary
modulation (addressed in Sect. 5.1), (ii) microbial thera-
peutics—namely targeted enrichment with probiotics
and prebiotics versus community-level replacement via
fecal microbiota transplantation (FMT) (Sect. 5.2), (iii)
microbiota-derived/directed agents (“postbiotics”) such
as short-chain fatty acids (SCFAs) and bile-acid modula-
tors (Sect. 5.3), and (iv) pharmacologic or phage-based
targeting of microbial pathways (Sect. 5.4). Across these
modalities, shared mechanistic axes include ecological
niche competition and colonization resistance; remod-
eling of metabolite networks (SCFAs, secondary bile
acids, indole derivatives) with downstream signaling
through G-protein—coupled receptors, FXR/TGR5, and
the aryl hydrocarbon receptor; reinforcement of epi-
thelial and neurovascular barriers; enteroendocrine and
vagal signaling; and recalibration of innate and adaptive
immune tone (e.g., microglial activation states, Th17/
Treg balance). This scaffold clarifies where modalities
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overlap mechanistically yet differ in scope, durability, and
standardization, providing a basis for explicit comparison
and rational combination. Table 2 summarizes the main
classes of therapeutic approaches, their rationales, and
current evidence.

Rationale and mechanisms

Targeted and replacement strategies act on overlapping
axes—ecological niche competition and colonization
resistance; metabolite reprogramming of SCFAs and sec-
ondary bile acids with signaling through GPCRs, FXR/
TGR5, and AHR; reinforcement of epithelial and neuro-
vascular barriers; and recalibration of innate and adap-
tive immune tone—yet differ in breadth, controllability,
and durability. Probiotics and prebiotics aim to enrich
defined taxa or feed specific guilds to shift functions in a
tractable, label-able manner, often contingent on baseline
community context and diet. FMT introduces a complex
donor consortium that can restore missing cross-feeding
networks quickly but at the cost of donor dependence
and greater procedural and regulatory complexity. These
distinctions motivate different endpoints (e.g., strain per-
sistence vs. donor engraftment), time-to-effect expec-
tations, and opportunities for induction-maintenance
sequencing.

Probiotics and prebiotics

Probiotics—typically well-characterized Lactobacillus/
Bifidobacterium consortia or next-generation strains—
and prebiotics such as inulin-type fructans, galacto-oli-
gosaccharides, and resistant starches offer standardized,
scalable levers to steer microbial functions and metabo-
lite profiles [240, 241]. Across preclinical and early-phase
human studies, signals include improved barrier integrity,
attenuation of low-grade inflammation, and modulation
of neuroimmune pathways; synbiotics and psychobiotics
seek to enhance effect sizes by pairing strains with sub-
strate specificity and targeting mood/cognition-relevant
circuits [242-245]. Safety is generally favorable (tran-
sient gastrointestinal symptoms predominate), but ben-
efits are heterogeneous, strain/context dependent, and
colonization is often transient, underscoring the value of
fiber-forward dietary backgrounds (Sect. 5.3), responder
stratification, and trials that predefine mechanistic bio-
markers and product characteristics (identity, potency,
dose, viability) [242-247].

Fecal Microbiota Transplantation (FMT)

FMT delivers a processed donor consortium to recon-
stitute community structure and function and is estab-
lished for recurrent Clostridioides difficile infection; in
neurodegenerative and neuroinflaimmatory contexts it
remains investigational [248-251]. Early case series and
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open-label studies support feasibility and biological plau-
sibility, whereas randomized trials show mixed clinical
signals, highlighting donor-dependent effects, protocol
heterogeneity (preconditioning, route, dose/frequency),
and the need for engraftment-aware endpoints [252—
255]. Safety is dominated by transient gastrointestinal
events, with rare but serious risks of pathogen or anti-
microbial-resistant organism transmission necessitat-
ing rigorous donor screening, validated manufacturing,
traceability, and post-procedure surveillance under regu-
lated protocols [256, 257]. Overall, optimization of donor
selection, dosing schedules, and diet co-interventions
appears pivotal to demonstrate consistent benefit [258].

Comparative effectiveness and use cases

Modality selection should weigh indication and urgency
of effect, comorbidities and medication burden, stand-
ardization and labeling requirements, scalability and
access, and patient preference. FMT can produce larger,
faster ecological shifts but entails greater operational and
regulatory burden; probiotics/prebiotics integrate readily
with lifestyle programs, suit prevention and maintenance,
and are easier to standardize, albeit with modest and
variable effect sizes [242-247, 256—258]. Hybrid induc-
tion—maintenance designs—e.g., short FMT induction
followed by synbiotic maintenance—or diet-anchored
step-up approaches may combine breadth with durabil-
ity; comparative studies should prespecify shared mecha-
nistic readouts and clinically meaningful outcomes.

Safety, standardization, and regulatory considerations

For targeted strategies, risk is low when products meet
strain-level identity, potency-at-expiry, and contami-
nant specifications under GMP-aligned manufacturing;
vigilance is warranted in severely immunocompromised
hosts. FMT requires comprehensive donor screening
(including MDROs), validated processing with chain-
of-custody and retention samples, release criteria, and
pharmacovigilance; outside C. difficile infection, most
jurisdictions restrict use to regulated trials [256-258].
Across modalities, reproducibility is limited by het-
erogeneity in formulation, dose, viability, and reporting.
Adoption of harmonized product characterization and
core mechanistic panels (e.g., SCFAs, bile acids, barrier/
immune biomarkers) would materially improve evidence
synthesis and regulatory appraisal.

Future directions

Next-generation approaches aim to capture community-
level benefits with pharmaceutical-grade consistency:
defined consortia (“FMT in a pill”) and engineered live
biotherapeutic products with tunable functions and bio-
containment. Precision will be enhanced by baseline
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phenotype—guided stratification (microbiome, metabo-
lome, immune signatures), diet-microbe matching,
and digital adherence support. Trial designs that imple-
ment induction-maintenance sequences, co-primary
mechanistic and clinical endpoints, longer follow-up for
durability, and head-to-head comparisons under harmo-
nized outcome sets are priorities; diet co-interventions
(Sect. 5.3) remain pragmatic tools to enhance engraft-
ment and sustain functional gains across modalities.

Microbial metabolite (postbiotic) supplementation

Rather than delivering microbes, an alternative approach
is to deliver beneficial microbial products (or “postbiot-
ics”) directly [259]. This can ensure a controlled dosage
and avoid uncertainties of live microbial behavior. Exam-
ples include SCFAs like butyrate or propionate, which
can be given orally or even intravenously [260]. Sodium
butyrate, as discussed, has shown neuroprotective effects
in multiple mouse models (AD, PD, MS) [76]. In an MS
model, butyrate administration led to increased remy-
elination of neurons [261]. In AD models, it improved
memory even when given late, presumably by enhancing
histone acetylation and BDNF expression [262]. Small
human studies are now starting: one trial in MS is test-
ing oral sodium butyrate’s effect on MRI and immune
markers [263]. Propionate, another SCFA, has already
shown an impact in MS patients, as noted (higher Tregs
and reduced relapses) [264]. Outside of SCFAs, other
postbiotics of interest include tryptophan metabolites.
For instance, indole-3-propionic acid (IPA) is a microbial
metabolite with antioxidant properties that can cross the
BBB; low IPA levels have been associated with worse cog-
nitive function [265]. Efforts are underway to formulate
IPA or similar compounds as supplements. Another cat-
egory is vitamins and cofactors — since gut bacteria pro-
duce vitamins B6, B8, B12, K, etc., supplementing these
might compensate for dysbiosis [266]. Vitamin B3 (nico-
tinamide) was effective in ALS mice via Akkermansia,
and now nicotinamide is being trialed in ALS patients at
high doses to see if it slows progression [83, 267]. Simi-
larly, urolithin A (a microbial metabolite from polyphe-
nols) is being explored for its mitophagy-boosting effects
that could benefit aging neurons [268, 269]. The chal-
lenge with postbiotics is ensuring they reach relevant
tissues in active form and determining optimal dosages
(levels of these compounds in a healthy person’s gut can
be quite high locally, which is hard to replicate with oral
dosing due to absorption and metabolism). Nonetheless,
they represent a precision approach — pinpointing which
molecular deficiencies exist due to dysbiosis and correct-
ing them. One successful example from another field is
oral bile acid supplements for certain neurological dis-
orders; in some ataxias, adding a bile acid (like TUDCA)
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thought to be deficient due to microbiome issues has
improved clinical outcomes [270]. In NDDs, trials with
TUDCA in ALS have shown some benefits (TUDCA is
now approved in ALS as part of the PB/TUDCA combo)
[224, 225]. Thus, directly supplementing key microbial
metabolites — SCFAs, vitamins, amino acid derivatives,
bile acids — is a promising adjunct or alternative to live
microbes, especially for patients who might be immuno-
compromised or unable to tolerate FMT/probiotics.

Targeting microbial pathways with drugs or phages

A nascent but exciting area is using targeted therapies
to modulate the microbiome without necessarily add-
ing anything new. One approach is selective inhibition of
harmful microbial enzymes. The case of levodopa degra-
dation in PD is illustrative: scientists identified a gut bac-
terial tyrosine decarboxylase that was eating up patients’
Parkinson’s medication, and they found a small-molecule
inhibitor that could block this enzyme and thus prevent
levodopa loss. This kind of approach — akin to an anti-
biotic but ultra-narrow in spectrum — could be used for
other microbial pathways too. For example, inhibitors of
TMA-lyase (the microbial enzyme turning choline into
TMA) have been developed (e.g. DMB, 3,3-dimethyl-
1-butanol) to reduce TMAO levels and are being tested
in models of cardiovascular diseases [271, 272]. If a sub-
set of gut microbes in AD or VD (vascular dementia) is
driving TMAO-associated inflammation, such inhibi-
tors might ameliorate it [273, 274]. Another target could
be microbial proteases or toxins that degrade the mucus
barrier or trigger inflammation; drugs that neutralize
these could protect the gut lining. In parallel, bacterio-
phage therapy is being considered — phages are viruses
that selectively infect bacteria [275, 276]. One could, in
theory, use phages to knock down specific pathogenic
bacteria in the gut without affecting the rest (unlike
broad antibiotics). There is research into phages that
target Enterobacteriaceae or Proteobacteria overgrowth,
which could be relevant for PD where those are elevated
[277]. Engineering phages to deliver genes into gut bac-
teria is another futuristic approach, potentially turning a
microbe harmful to harmless. Additionally, some existing
drugs not originally aimed at the microbiome turn out to
have microbiome-mediated effects. Metformin, a diabe-
tes drug, alters the gut microbiome and increases SCFAs
and bile acids that activate GLP-1, which has led to explo-
ration of metformin in AD and PD trials for its possible
MGBA benefits [278, 279]. Minocycline, an antibiotic
that crosses the BBB, has anti-inflammatory effects in the
brain and also changes the gut microbiome composition
in anxiety models [280-282]. While not a targeted micro-
biome drug, its pleiotropic effects (part immune modu-
lation, part microbe modulation) have been tested in
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early PD and HD trials (with mixed results). The bottom
line is that the pharmacologic toolkit for modifying the
microbiome is growing. We may eventually see combina-
tion therapies — e.g. a patient gets an FMT or probiotic
to establish a core healthy microbiome, then a targeted
enzyme inhibitor to prevent that microbiome from pro-
ducing a particular neurotoxin, plus a diet to feed it the
right substrates. This multipronged strategy recognizes
the complexity of the MGBA and the need to tackle it at
multiple levels for maximal therapeutic effect.

It is important to note that not all trials of microbiota-
targeted therapies have been successful. There have been
instances of null results — for example, a recent trial of
Synbiotics (combined prebiotic + probiotic) in PD did not
show significant motor benefits, possibly due to insuffi-
cient dosing or variability in patients’ baseline microbi-
omes [283]. Similarly, an antibiotic trial in AD aimed at
altering the microbiome did not yield cognitive improve-
ment over placebo [284, 285]. These outcomes highlight
challenges such as inter-individual differences (what
works in one person’s gut may not in another’s), timing
(intervening too late in disease may limit benefits), and
the need for biomarkers to identify who is most likely to
respond. As we move forward, personalizing microbiome
therapies will likely be necessary — for instance, stratify-
ing patients by their microbiome profile or metabolite
levels, then tailoring the intervention (one patient might
need more SCFAs, another needs more anti-TMAO
measures, etc.).

Another challenge is ensuring long-term engraftment:
probiotics often only transiently colonize, and FMT
engraftment can wane with time if not maintained by diet
or repeat dosing. Therefore, sustained lifestyle changes or
periodic “boosters” might be required for durable ben-
efits. Safety monitoring is also crucial — while probiotics
and FMT have been safe in trials so far, there is a theo-
retical risk of introducing infections or causing undesired
immune reactions, especially in patients with immune
dysfunction (like those on MS immunosuppressants).
Regulatory oversight will require standardized manufac-
turing for any live biotherapeutic products.

Despite these hurdles, the overall trend in clinical
research is optimistic. Early-phase trials indicate that tar-
geting the MGBA is feasible and can yield symptomatic
improvements. Translationally, we also see that MGBA
research is informing biomarker development: for exam-
ple, measuring short-chain fatty acid levels, gut permea-
bility markers, or fecal bacterial gene profiles as surrogate
markers of treatment response in trials. In PD, research-
ers are testing whether a shift in stool microbiome after
an intervention correlates with motor changes, which
could validate that the therapy engaged the intended tar-
get (the microbiome).
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In conclusion, a suite of microbiota-targeted strategies
— diet, pre/probiotics, FMT, postbiotics, and precision
drugs — are under active investigation as novel treat-
ments for neurodegenerative diseases. These approaches
are fundamentally different from traditional CNS drugs,
as they work holistically through the gut-brain axis,
potentially influencing multiple pathways (immune,
metabolic, neural) simultaneously. While still in early
days, they offer a complementary avenue to directly
CNS-targeted therapies like monoclonal antibodies or
neurotrophic drugs. Ultimately, the best care for NDDs
might involve combining both: for example, using a dis-
ease-modifying drug to reduce protein aggregation in the
brain and a microbiome therapy to reduce inflammation
and enhance resilience. This multi-targeted approach,
embracing the MGBA, aligns with the emerging view of
neurodegenerative diseases as whole-body disorders that
require system-level interventions.

In implementing these interventions, it’s likely that
combinations will yield the best outcomes. For example,
in an AD patient one might use diet to lay the ground-
work, a probiotic to introduce a specific function (like
producing more butyrate), and a small-molecule inhibi-
tor to suppress a detrimental metabolite (like TMAO)
simultaneously. Each strategy has distinct strengths —
diet and probiotics broadly improve the microbiome’s
balance and metabolites; FMT can reset a severely dysbi-
otic system; postbiotics and drugs can fine-tune specific
pathways. An integrated approach, possibly personalized
to each patient’s microbiome profile, will probably be
required to significantly modify disease course.

Taken together, MGBA-targeted therapies have shown
promise in modulating disease symptoms and biomark-
ers, yet most studies remain preliminary. Standardization
of protocols, patient stratification, and integration with
disease-modifying therapies will be critical for transla-
tion into clinical practice.

Conclusion and future perspectives

Research into the microbiota—gut—brain axis has uncov-
ered a vital new dimension in our understanding of neu-
rodegenerative diseases. The gut microbiome, through its
dynamic interactions with the immune, metabolic, and
neural systems, emerges as both a contributor to pathol-
ogy and a promising therapeutic target. In conditions
like AD and PD, we now recognize that brain disorders
are not “all in the head” — they involve a constellation of
systemic changes, with gut dysbiosis potentially seeding
inflammation and protein misfolding long before neurons
degenerate. In MS, the microbiome’s influence on auto-
immunity underscores the importance of environmental
factors in neuroinflammation. Even for ALS, tradition-
ally viewed as a cell-autonomous neurodegeneration, the
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surprising benefits of certain microbes hint at new meta-
bolic avenues for intervention.

From a molecular viewpoint, key mechanistic themes
have emerged: microbial metabolites such as SCFAs,
tryptophan metabolites, and bile acids can penetrate
into the CNS or signal via the vagus, modulating micro-
glial activation, astrocytic support, and even neuronal
gene expression. Conversely, microbial toxins like LPS or
excessive ammonia can exacerbate neuroinflammation
and oxidative stress. The balance of these influences may
determine whether the CNS environment tilts toward
neurodegeneration or repair. The MGBA thus offers a
multimodal therapeutic target: unlike a drug that hits one
receptor, manipulating the gut can simultaneously affect
numerous pathways (immune, metabolic, etc.) that are
dysregulated in NDDs. This systems-level modulation is
both an opportunity (for comprehensive disease modifi-
cation) and a challenge (for precision and predictability).

Clinically, the early trials give reason for cautious opti-
mism. While not a panacea, microbiota-based interven-
tions have shown the ability to improve at least some
outcomes (e.g. cognitive scores in AD, motor symptoms
in PD, inflammatory markers in MS). Importantly, many
of these therapies are low risk and cost-effective — for
instance, probiotics and dietary changes can be imple-
mented alongside standard treatments with minimal
downside. The variability in trial results also teaches
us that a one-size-fits-all approach is unlikely to work.
Patients have unique microbiome “fingerprints, so
future efforts must focus on personalized microbiome
medicine. This could mean using baseline stool analyses
to guide therapy selection — for example, a PD patient
lacking SCFA-producers might benefit most from a
butyrate-producing probiotic, whereas one with high
Enterobacteriaceae might need a targeted phage or anti-
biotic to reduce endotoxin load.

Another critical area is the search for biomarkers and
surrogate endpoints related to the MGBA. These would
greatly enhance clinical trials and patient monitoring.
Possibilities include: fecal SCFA levels (as an indicator of
beneficial fermentation), serum TMAO (marker of det-
rimental microbial metabolism), gut permeability assays
(like urinary sugar tests or blood zonulin) to gauge gut
barrier integrity, and even gut microbial gene profiles
that might predict rapid vs slow disease progression.
For example, one could envision an “Alzheimer’s dys-
biosis index” based on the ratio of certain bacterial taxa
that correlates with cognitive decline rate — some stud-
ies are already exploring composite indices of this sort.
Additionally, neuroimaging and CSF biomarkers can be
integrated; one pioneering study linked gut metabolomic
changes to functional brain MRI connectivity changes in
AD. In PD, researchers are examining if gut microbiome
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composition associates with markers like alpha-synuclein
in colonic biopsies or with REM sleep behavior disorder
severity (a prodromal feature). The hope is that micro-
biome markers could serve as early warning signs (e.g.
identifying high-risk individuals who could adopt pre-
ventative diets) or as indicators of therapeutic response
(seeing the microbiome shift towards a “healthy” state
might precede and predict clinical improvement).

As we look to the future, several directions are particu-
larly exciting:

Longitudinal Cohort Studies: Following large cohorts
over time with integrated gut microbiome and neurologic
assessments will help nail down cause-effect relation-
ships. If certain microbial changes consistently precede
disease onset by years (as constipation does in PD), it
strengthens the case for causality and prevention. Some
such studies are underway (e.g. profiling microbiomes in
people with genetic risk for PD or AD to see if and how
their gut changes as they convert to disease).

Multi-omics and Systems Biology: Combining genom-
ics, transcriptomics, metabolomics, and metagenomics
will provide a holistic view of the host-microbe ecosys-
tem in NDDs. For instance, single-cell RNA sequencing
of microglia in germ-free vs colonized mice with neuro-
degenerative pathology can pinpoint microglial genes
influenced by the microbiome. Similarly, metabolomic
profiling of blood and CSF in patients, alongside micro-
biome data, can identify which microbial metabolites
truly cross into the brain and affect pathways like amy-
loid deposition or axonal integrity. Machine learning on
such complex datasets might reveal unexpected micro-
bial influences (e.g. a bacterial product that correlates
with tau phosphorylation levels). This systems approach
will also help identify novel therapeutic targets — perhaps
a particular microbial enzyme or pathway not previously
linked to neurodegeneration could emerge.

Mechanistic Studies in Gnotobiotic Models: Animal
models where the microbiome is controlled (germ-free
or colonized with defined communities) are invaluable
for proving mechanistic links. We have already seen
examples: transplanting microbiomes from patients into
mice to induce disease features, or adding/removing sin-
gle species to gauge their impact on pathology. Contin-
ued use of these models, including newer ones like gut
organoids with human microbiota or “brain-gut” chip
systems, will allow dissection of how specific microbes or
metabolites act on specific brain cell types. For example,
one could test how Akkermansia nicotinamide affects
motor neurons in vitro, or how a mix of SCFAs alters
microglial gene expression in a co-culture system.

Therapeutic Development: Building on early successes,
we anticipate second-generation therapies. Instead of
crude FMT, maybe encapsulated defined consortia,
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with pharma-grade manufacturing, will be approved for
NDD indications. Already, standardized FMT capsules
are approved for C. diff infection — similar products
might be tailored for AD (e.g. containing microbes that
produce more butyrate and consume tryptophan into
indoles). Probiotics might evolve into prescription “Live
Biotherapeutic Products” with genetically enhanced
functions — for instance, a Bifidobacterium engineered
to overproduce glutathione (an antioxidant) to help
with PD oxidative stress. Postbiotic drug development
will likely expand; companies are examining compounds
that mimic bacterial metabolites but are more drug-like
(improved stability, BBB penetration). We may also see
adjunctive therapies that combine microbiome modula-
tion with neuroimmune modulation — e.g. pairing a gut-
targeted therapy with an anti-amyloid or anti-synuclein
antibody to tackle different aspects of disease.
Personalized and Preventive Approaches: In the more
distant future, routine screening of one’s microbiome
could become part of preventive neurology. If an indi-
vidual in mid-life has a “pro-neurodegenerative” micro-
biome signature (low diversity, low SCFA-producers,
high pro-inflammatory taxa), they might be counseled to
intervene early via diet, prebiotics, or even prophylactic
probiotics to shift their microbiome to a healthier state.
Particularly for those with a family history or genetic pre-
disposition (like APOE4 carriers for AD), microbiome-
based prevention could be an attractive low-risk strategy
to reduce risk or delay onset. This will require strong
evidence from trials that such interventions in asympto-
matic or early-stage individuals truly alter the trajectory
— studies like the “Brain-Microbiome” project in prodro-
mal AD and the “TopHat” trial in REM-sleep-behavior-
disorder (prodromal PD) are beginning to explore this.
Challenges remain: Deciphering causality is difficult —
the microbiome is both a cause and consequence of dis-
ease in many cases. We must avoid oversimplification;
not all changes in the microbiome are harmful (some
may be compensatory). There is also significant person-
to-person variability — two AD patients might have
very different microbiome alterations yet end up with
similar pathology, indicating multiple microbial paths to
the same disease. Thus, therapies will need to be adapt-
able or broad-acting. Regulatory aspects of microbiome
therapies (especially FMT and genetically engineered
microbes) require careful oversight to ensure safety and
consistency. Additionally, patient acceptance is a factor —
convincing patients to take say, an FMT capsule derived
from stool, or to adhere to a strict diet, can be challeng-
ing; education and demonstrating clear benefits will help.
In conclusion, the microbiota—gut—brain axis provides
a powerful lens through which to reinterpret neurode-
generative disease mechanisms, integrating neurology
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with immunology and metabolism. It shifts the paradigm
from treating the brain in isolation to treating the “whole
patient” — brain and body as an interconnected system.
By harnessing this axis, we open up a new frontier of
multi-targeted interventions that could complement
existing therapies. The work ahead will determine how
far we can go in translating MGBA science into tangible
clinical benefits, but the progress to date already suggests
that the gut microbiome may become a cornerstone of
precision medicine in neurology. As this field advances, it
brings hope for more effective, personalized, and holistic
strategies to combat neurodegenerative diseases — trans-
forming how we prevent and treat these formidable dis-
orders that pose one of the greatest challenges to healthy
aging in our society.
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